AI Bias Bounties

Like bug bounties, but for bias in AI:

A similar problem exists in information security and one solution gaining traction are “bug bounty programs”. Bug bounty programs seek to allow security researchers and laymen to submit their exploits directly to the affected parties in exchange for compensation.

The market rate for security bounties for the average company on HackerOne range from \$100-\$1000. Bigger companies can pay more. In 2017, Facebook has disclosed paying \$880,000 in bug bounties, with a minimum of $500 a bounty. Google pays from \$100 to \$31,337 for exploits and Google paid \$3,000,000 in security bounties in 2016.

It seems reasonable to suggest at least big companies with large market caps who already have bounty reporting infrastructure, attempt to reward and collaborate with those who find bias in their software, rather than have them take it to the press in frustration and with no compensation for their efforts.

Bias Bounty Programs as a Method of Combatting Bias in AI

Bad software kills 346 people

That’s a fair headline for the story that has ultimately emerged about the Boeing 737-MAX crashes.

The Verge has a good overview:

But Boeing’s software shortcut had a serious problem. Under certain circumstances, it activated erroneously, sending the airplane into an infinite loop of nose-dives. Unless the pilots can, in under four seconds, correctly diagnose the error, throw a specific emergency switch, and start recovery maneuvers, they will lose control of the airplane and crash — which is exactly what happened in the case of Lion Air Flight 610 and Ethiopian Airlines Flight 302.

THE ANCIENT COMPUTERS IN THE BOEING 737 MAX ARE HOLDING UP A FIX

I once linked to a story about how no one really cares about software security because no one ever gets seriously hurt. This is a hell of a counterpoint, though admittedly a narrow one.

AI researchers submitting to NeurIPS conference must now address ethical concerns

Khari Johnson, writing for Venture Beat:

For the first time ever, researchers who submit papers to NeurIPS, one of the biggest AI research conferences in the world, must now state the “potential broader impact of their work” on society as well as any financial conflict of interest, conference organizers told VentureBeat.

NeurIPS requires AI researchers to account for societal impact and financial conflicts of interest

NeurIPS, or the Conference on Neural Information Processing Systems, is the largest AI conference in the world.

NLP models keep getting bigger and better

Microsoft Research has trained a transformer-based generative language model with over 17 billion parameters. And it performs very well, answering many natural language questions directly:

Turing-NLG: A 17-billion-parameter language model by Microsoft

What is the right size? How much bigger can they get? We are rapidly approaching human levels of natural language performance (but not comprehension).

Summary of EARN IT Act of 2019

Senator Lindsey Graham has introduced the EARN IT Act of 2019, which would eliminate online service providers’ immunity for the actions of their users under Section 230 of the Communications Decency Act.

The Act essentially establishes a National Commission on Online Child Exploitation Prevention, tasks this commission with drafting online best practices for preventing child exploitation by users (which would presumably mean no end-to-end encryption), and eliminates Section 230 immunity unless service providers follow those best practices.

SAFE HARBOR.—Subparagraph (A) [removing immunity] shall not apply to a claim in a civil action or charge in a criminal prosecution brought against a provider of an interactive computer service if – (i) the provider has implemented reasonable measures relating to the matters described in section 4(a)(2) [referring to creation of the best practices] of the Eliminating Abusive and Rampant Neglect of Interactive Technologies Act of 2019 to prevent the use of the interactive computer service for the exploitation of minors . . . .

Page 17 of the EARN IT Act of 2019

Other sections create liability for “reckless” violations (instead of “knowing” violations), require online service providers to certify that they are complying with the created best practices, and set forth the requirements for membership in the newly created commission.

This bill comes after a hearing in December 2019 over the issue of legal access to encrypted devices. During that hearing Senator Graham warned representatives of Facebook and Apple that, “You’re gonna find a way to do this or we’re going to do it for you.”

3/15/20 Update – A revised version of the EARN IT Act, introduced on March 5, alters how so-called “best practices” are created. First, a 19-member commission comprising the Attorney General, the Secretary of Homeland Security, the Chairman of the FTC, and (to be chosen by the heads of each party in the House and Senate) four representatives from law enforcement, four from the community of child-exploitation victims, two legal experts, two technology experts, and four representatives from technology companies. The support of 14 members would be required to approve any best practices, the recommendations must be approved by the AG, Secretary of Homeland Security, and the FTC Chair, and then Congress itself must enact them.

Facial recognition tech in Moscow

First London, now Moscow.

Moscow is the latest major city to introduce live facial recognition cameras to its streets, with Mayor Sergei Sobyanin announcing that the technology is operating “on a mass scale” earlier this month, according to a report from Russian business paper Vedomosti.

. . . . .

Moscow started trialing live facial recognition in 2017, using technology from Russian firm NtechLab to scan footage from the Russian capital’s network of 160,000 CCTV cameras. The company is best known for its FindFace software, which it launched in 2016 and let users match anyone in a picture to their profile on VK, known as Russia’s Facebook.

The app was criticized by some, particularly as it was used to dox and harass sex workers, and NtechLab eventually shut it down in favor of enterprise and government work.

Moscow rolls out live facial recognition system with an app to alert police

Prediction vs thought in GPT-2

GPT-2 is a neural network model originally developed by OpenAI and based on Google’s Transformer model. It has demonstrated impressive, even fantastic performance, on a variety of language metrics. But is it in any way embodying real intelligence? The Gradient’s Gary Marcus says no.

Here’s the problem: upon careful inspection, it becomes apparent the system has no idea what it is talking about: it cannot follow simple sequence of events nor reliably have any idea what might happen next.

GPT-2 and the Nature of Intelligence

Marcus cites some impressive prediction results, such as the following where the GPT-2 predicted text follows the bolded part:

I grew up in Rome I speak fluent Italian and can use Italian throughout my notes.

I grew up in Rio de Janeiro. I speak fluent Portuguese, Spanish and many of the local languages.

I grew up in Shanghai. I speak fluent Mandarin, and I have learned a lot of Chinese, so I really don’t have any issues with learning Chinese

Nevertheless, GPT-2 is unable to follow basic causality:

Suppose for example that I ask the system what happens when I put two trophies a table and another:

I put two trophies on a table, and then add another, the total number is is five trophies and I’m like, ‘Well, I can live with that, right?

What happens if I have four plates and put one cookie on each?

I have four plates and put one cookie on each. The total number of cookies is 24, 5 as a topping and 2 as the filling

Marcus suggests that these results support the view that GPT-2 is simply very good at predicting which words will follow other words. It does not actually understand what it is predicting. And this failure to achieve any kind of understanding despite a huge training set of 40 gigabytes of text suggests that true language understanding might not be the result of empirical experience or statistics after all.

One of the most foundational claims of Chomskyan linguistics has been that sentences are represented as tree structures, and that children were born knowing (unconsciously) that sentences should be represented by means of such trees. Every linguistic class in the 1980’s and 1990s was filled with analyses of syntactic tree structures; GPT-2 has none.

. . . . .

Rather than supporting the Lockean, blank-slate view, GPT-2 appears to be an accidental counter-evidence to that view. Likewise, it doesn’t seem like great news for the symbol-free thought-vector view, either. Vector-based systems like GPT-2 can predict word categories, but they don’t really embody thoughts in a reliable enough way to be useful.

If GPT-2 is fundamentally prediction, and prediction is fundamentally not understanding, how far will this road take us? Would we ever be able to rely on a GPT-2-like model for critical tasks? It may be that common sense is always just out of reach.

Heart prints are a new biometric

While the world debates the utility and ethics of existing facial recognition technology, new biometrics are constantly being developed. They are likely to replace facial recognition in the long term.

This system, dubbed Jetson, is able to measure, from up to 200 metres away, the minute vibrations induced in clothing by someone’s heartbeat. Since hearts differ in both shape and contraction pattern, the details of heartbeats differ, too. The effect of this on the fabric of garments produces what Ideal Innovations, a firm involved in the Jetson project, calls a “heartprint”—a pattern reckoned sufficiently distinctive to confirm someone’s identity.

To measure heartprints remotely Jetson employs gadgets called laser vibrometers. These work by detecting minute variations in a laser beam that has been reflected off an object of interest. They have been used for decades to study things like bridges, aircraft bodies, warship cannons and wind turbines—searching for otherwise-invisible cracks, air pockets and other dangerous defects in materials. However, only in the past five years or so has laser vibrometry become good enough to distinguish the vibrations induced in fabric by heartprints.

People can now be identified at a distance by their heartbeat

This is astonishing technology and will surely improve. In the long term your unique identity will be readily available to anyone who cares.